Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance.
نویسندگان
چکیده
The isolation of rhizobial strains which exhibit an intrinsic tolerance to acidic conditions has been reported and has facilitated studies on the basic mechanisms underlying acid tolerance. Rhizobium tropici strain CIAT899 displays a high intrinsic tolerance to acidity and therefore was used in this work to study the molecular basis of bacterial responses to acid conditions and other environmental stresses. We generated a collection of R. tropici CIAT899 mutants affected in acid tolerance using Tn5-luxAB mutagenesis, and one mutant strain (CIAT899-13T2), which fails to grow under acid conditions, was characterized in detail. Strain CIAT899-13T2 was found to contain a single Tn5-luxAB insertion in a gene showing a high degree of similarity with the Escherichia coli gshB gene, encoding the enzyme glutathione synthetase. Intracellular potassium pools and intracellular pH levels were found to be lower in the mutant than in the parent. The glutathione-deficient mutant was shown to be sensitive to weak organic acids, osmotic and oxidative stresses, and the presence of methylglyoxal. Glutathione restores responses to these stresses almost to wild-type levels. Our data show that in R. tropici the production of glutathione is essential for growth in extreme environmental conditions. The mutant strain CIAT899-13T2 induced effective nodules; however, it was found to be outcompeted by the wild-type strain in coinoculation experiments.
منابع مشابه
Rhizobium tropici response to acidity involves activation of glutathione synthesis.
Rhizobium tropici CIAT899 displays intrinsic tolerance to acidity, and efficiently nodulates Phaseolus vulgaris at low pH. By characterizing a gshB mutant strain, glutathione has been previously demonstrated to be essential for R. tropici tolerance to acid stress. The wild-type gshB gene region has been cloned and its transcription profile has been characterized by using quantitative real-time ...
متن کاملA ClC chloride channel homolog and ornithine-containing membrane lipids of Rhizobium tropici CIAT899 are involved in symbiotic efficiency and acid tolerance.
Rhizobium tropici CIAT899 is highly tolerant to several environmental stresses and is a good competitor for nodule occupancy of common bean plants in acid soils. Random transposon mutagenesis was performed to identify novel genes of this strain involved in symbiosis and stress tolerance. Here, we present a genetic analysis of the locus disrupted by the Tn5 insertion in mutant 899-PV9, which lea...
متن کاملHydroxylated ornithine lipids increase stress tolerance in Rhizobium tropici CIAT899.
Ornithine lipids (OLs) are widespread among Gram-negative bacteria. Their basic structure consists of a 3-hydroxy fatty acyl group attached in amide linkage to the α-amino group of ornithine and a second fatty acyl group ester-linked to the 3-hydroxy position of the first fatty acid. OLs can be hydroxylated within the secondary fatty acyl moiety and this modification has been related to increas...
متن کاملReclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov.
Rhizobium tropici is a well-studied legume symbiont characterized by high genetic stability of the symbiotic plasmid and tolerance to tropical environmental stresses such as high temperature and low soil pH. However, high phenetic and genetic variabilities among R. tropici strains have been largely reported, with two subgroups, designated type A and B, already defined within the species. A poly...
متن کاملGenetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness.
Rhizobium tropici CIAT899 is highly acid tolerant and a good competitor for Phaseolus vulgaris nodule occupancy at low pH values. Using Tn5 mutagenesis, we identified an operon required for acid tolerance and nodulation competitiveness. The insertion was mapped to the 5' end of atvA, encoding a product with high sequence identity to the agro-bacterial AcvB virulence protein. Complementation ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 182 6 شماره
صفحات -
تاریخ انتشار 2000